Information Tree Extensions within ICA
(IC Objects as an Implementation of an
Information Tree in Information-Centric Architecture)

Overview

The Information Tree Structure at the heart of Information-Centric Architecture (ICA) is a Data
Tree with a number of critical extensions to add meaning and capture the information
necessary to generate rigorous business applications from the data within those extensions. In
ICA, the Information Tree structure is implemented through Information-Centric Objects (IC
Objects), which define and automate the processing of ALL data in ICA business applications.

Before reviewing those extensions below, it is important to understand three foundational
characteristics of IC Objects which are critical to the success of those extensions in delivering
the huge gains in productivity, quality and flexibility claimed for ICA.

1. The information tree structure provides a visual image of the relationships between
data components. In complex business applications, it is the relationships between
pieces of information that are the most difficult to comprehend and document. The
information tree structure provides a visual representation of those relationships within
the various contexts of an application. An instance of a particular information tree is
considered an “object” and its definition is called a “Logical Object Definition (LOD).”

2. The information tree structure supports ALL kinds of data within a business application,
regardless of its source. Thus, the definition of business rules and the
presentation/modification of data on human interfaces is exactly the same for all forms
of data, introducing a consistency and simplicity to the whole development process.

3. The information tree structure is consistently used throughout all phases of business
application development. From the earliest stages of analysis to the final stages of
maintenance and debugging, that same visual structure is used without any need for its
transformation from one phase to another. Thus, when a developer is debugging a
business application generated through ICA, they use a visual display tool to present
object content in the same structure as specified in the IC Object Definition that was
initially created during analysis and then continually modified during the
development/validation process.

The most important data tree extensions of ICA follow below. It is the power of these
extensions that set the foundation for ICA and enable the applications of the future to be

assembled from reusable library components. They are listed as follows, with explanations of
these extensions making up the body of this document.

Information Tree Extensions within Information-Centric Architecture

Persistent Source and Target Variations of Information Tree Data in IC Objects
Derived Attributes

Duplicate Entities Down Different Paths

Includable Subobjects as Parts of an Information Tree

IC Object Support of Work-In-Progress Processing

Recursive Subobject Processing

Data Integrity and Object Validation

Cascading Delete Rules

W NUREWNRE

Business Processing Rules

10. Human Interface Mapping

11. Server-to-Server Communication
12. Merging Components

I. Source and Target Variations of Information Tree Data in IC Objects

The data within an IC Object can come from a variety of sources as defined below and can be
written back to the same source or used to create data in a different external form.

Relational Database: The most common source of an IC Object is a relational database, where
the entities making up the IC Object are from the ER Data Model, which defines the logical form
of the database. The hierarchal relationships in the tree are relationships (implemented as
foreign keys in the generated physical database) from that data model. No SQL statements are
ever written by the developer but are generated by the single Activate and Commit statements
that are used to read and write IC Objects from and to the database.

Sample ER Data Model: The sample below shows part of the ER Data Model for the CRMBase
Component Library, displaying the list of attributes for the highlighted entity, Person. Note that
each attribute is assigned a Domain, which is an extension of the datatype for a normal data
model, This extension includes the datatype of the generated database column, but also
defines all internal and external values the attribute can take, which automatically validates
data and automates the formatting of external data values on human interfaces. It should also
be noted that an ER Data Model can be created for an existing legacy database, sometimes by
importing the physical definition, allowing legacy applications to be extended and assisting their
transition to current technologies.

File Edit View Display SubjectArea Utilities Cross Reference Reports Help
A alec
Fes clyrewmic deirision (0.1 for (01 Document
T i 5] = I~
ContactlList = is amsigned 10 (0,1 |
b e sssgnement of (0m) ¥
a8
Vq bt | sontactListite was cressed § § { & ¢ R - E
g e [r— ala 5
- e &5
gl ; ,"é § No | Attribute Name | Reg | Domain | WA
3 StoredQuery 3= a(g 11D Y Integer
HE gl 2 LastName GeneralName_address
Sz 2|3 3 FirstName GeneralName_Address
§ 5 =z ? 4 MiddleName GeneralName_address
glz 2 5 Suffix GeneralName_Address
oy | demographice I HE 5 E & DateQfBith Date
L HH T2 7 eMaildddiess EMailtddress
i _— ‘é el ‘“_“5:5 8 PreferredEmail EMaildddress
B3 sdivenby Q1) Repoy 9 WorkEmail EMaildddress
o (L1 e e i 10 Gender Gender
- e privar e HE 11 HomePhone PhoneNumber
alE 12 MobilePhone PhoneNumber
U SR - PR J .. o] 3F 23] 13 Deceased YN
: o ! QuenyDispla- | =3 14 Dgceasngale Date
| QuenEntity , | yEntity : 2[=] 15 DriversLicenseNumber Test
| el torea 16 DriversLicenseState State
= = e 17 MaidenName Text
El\g El\g QueryCategar [** 18 MaritalStatus MaritalStatus
Pt e ~ Pt e ~ 19 MaritalStatusDate Date
+ QueryAttribute | + QueryDispla- | 20 Note Note
I i | yaAtiibute 21 PreferedFirstName GeneralName_Address
et et 22 Prefix GeneralName Address &
< > v
< >

Relational Database IC Object: A database IC Object definition is made up of entities,
relationships and attributes from an ER Data Model. Because the ER Data Model is tied to a
physical data model (which defines foreign keys for relationships), the IC Object definition has
all the information necessary to generate read and write SQL and maintain the integrity of its
data.

Sample IC Object from Student Information System Application: The sample below shows part
of an IC Object to update class data in a Student Information System library. Explanations for
maintaining data integrity and the significance of entity colors in the tree are provided in later
sections of this document. The list of attributes are shown for the selected
EnrolledStudentPerson entity, along with their assigned Domains.

22 Entity Attribute List - EnrolledStudentPers...

No | Attribute Name Domain Name
D Integer
GeneralName_Address

Partial Trace of Generated SQL Statements for Activation of an IC Object Instance for Class: As

can be seen in the sample below, the information tree structure and the relationship cardinality

from the ER Data Model provide the necessary information for the SQL generator to produce

optimal SQL statements, generating table joins as needed. There is also an asynchronous option

for activating large work-in-progress objects that will return necessary data to the user

interface prior to all data being read into memory. The result is often more efficient data access
than is done with hand-written SQL.

|seLs
+

FREEEE I S i T N T S S

+

SQL>
sQL>
sQL>
sQL>
sQL>
SQL>
sQL>
SQL>
sQL>
SQL>
sQL>
sQL>
sQL>
sQL>
SQL>
sQL>
SQL>
sQL>

sQL>
sQL>
sQL>

SQL>
sQL>
SQL>
sQL>

sQL>
SQL>
sQL>
SQL>

sQL>

THC LUl Tunnae view ey

Activating Object Def mClass
Database name = OPENCUASS

SELECT CLASS.ID, CLASS.SECTION, CLASS.STATUS, CLASS.ADULTSTUDIESFLAG, CLASS.ENROLLMENTLIMIT, CLASS.NUMBEROFRESERVEDST,
CLASS.DRCTDSTDYINTBYCLGF, CLASS.CLASSSTARTDATE, CLASS.CLASSENDDATE, CLASS.PASSFAILCLASS, CLASS.HONORSFLAG, CLASS.COURSE
CLASS.FINALEXAMDATE, CLASS.FINALEXAMSTARTTIME, CLASS.FINALEXAMENDTIME, CLASS.ATSCHDLNGTHRSHLDPR, CLASS.NOFINALEXAMFLAG,
CLASS.MIDTRMGRDSVRFDUSRN, CLASS.HISTORCLENRLLMNTCN, CLASS.HISTORICALWTLSTDCN, CLASS.TOTALSESSIONS, CLASS.DISTRIBUTIONDA
CLASS.LS_INSTRUCTORNAME, CLASS.LS_COURSEID, CLASS.LS_CLASSID, CLASS.LASTMODIFIEDBY, CLASS.MODIFIEDDATETIME, CLASS.FKIDS
CLASS.FK_ID_COURSETOPIC, CLASS.FK_ID_FACULTY, CLASS.FK_ID_ROOM, CLASS.FK_ID_ROOM@2, CLASS.FK_ID_GRADESCALE, COURSE.ID,
COURSE.STATUS, COURSE.FKIDSURVEYQUESTION, COURSE.FK_ID_COLLEGE, COURSE.FK_ID_COLLEGEYEAR, COURSE.FK_ID_COLLEGEYEA®2, CC
DEPARTMENT . FKIDADMINISTRATIVE, DEPARTMENT.FK_ID_DIVISION, DEPARTMENT.FK_ID_FACULTY, COURSETOPIC.ID, COURSETOPIC.z_NUMBE
COLLEGETERM. FACULTYFINALGRADFL, COLLEGETERM.LS_TERMID, COLLEGETERM.FCLTYMTGRDENTRYOPN, COLLEGETERM.FCLTYMTGRDENTRYCLS,
COLLEGETERM. FK_ID_COLLEGEYEAR, COHORT.ID, COHORT.NAME, COHORT.FKIDADMINISTRATIVE, COHORT.FK_IDCAMPUSLOCATIO, COHORT.FK_
STUDENT.FK_ID_COLLEGE, STUDENT.FK_ID_COLLEGEYEAR, STUDENT.FK2_ID_PERSON, STUDENT.FK_ID_PERSON, STUDENT.FK_ID_STUDENTHEA
PERSON.FK_ID_CHURCH, PERSON.FK_ID DEGREETRACK, PERSON.FK_ID_DONOR, PERSON.FKIDEXTRACURRICULA, PERSON.FK_ID_FINAIDPROFIL
BUILDING.NAME, A1@.ID, A1@.z_NUMBER, A18.FK_ID_BUILDING, A11.ID, All.NAME, FACULTY.ID, FACULTY.STATUS, FACULTY.TYPE, FA
A13.SUFFIX, A13.0FID_ROOM, A13.FK_ID_ADDRESS, A13.FK_TD_CHURCH, A13.FK_ID_DEGREETRACK, A13.FK_ID_DONOR, A13.FKIDEXTRACU
CLASSROOMSTANDARDSCHEDULE. TITLE, SURVEYQUESTIONAIRE.ID, SURVEYQUESTIONAIRE.NAME, SURVEYQUESTIONAIRE.FK_ID_Z_USER, SCHOC
SCHOOL . UNACREDDITEDFLAG, SCHOOL.CREATEDDATETIME, SCHOOL.MODIFIEDDATETIME, SCHOOL.CREATEDBY, SCHOOL.LASTMODIFIEDBY, SCHC
CLASS.DISTRIBUTEDNOTE, CLASS.FCLTYMDTRMGRDENTRY, CLASS.FACULTYGRADEENTRYN, CLASS.z_NOTE, COURSE.DESCRIPTION, ROOM.z_NOT
FROM ((¢ (C C C ¢ (¢ ({ (¢ ((CLASS LEFT JOIN COURSE
ON COURSE.ID = CLASS.FK_ID_COURSE) LEFT JOIN DEPARTMENT
ON DEPARTMENT.ID = COURSE.FK_ID_DEPARTMENT) LEFT JOIN COURSETOPIC
ON COURSETOPIC.ID = CLASS.FK_ID_COURSETOPIC) LEFT JOIN COLLEGETERM
ON COLLEGETERM.ID = CLASS.FK_ID_COLLEGETERM) LEFT JOIN COHORT
ON COHORT.ID = CLASS.FK_TD_COHORT) LEFT JOIN STUDENT
ON STUDENT.ID = COHORT.FK_ID_STUDENT) LEFT JOIN PERSON
ON PERSON.ID = STUDENT.FK_ID_PERSON) LEFT JOIN ROGM
ON ROOM.ID = CLASS.FK_ID_ROOM) LEFT JOIN BUILDING
ON BUILDING.ID = ROOM.FK_ID_BUILDING) LEFT JOIN ROOM AS Al@
ON A1@.ID = CLASS.FK_ID_ROOM@2) LEFT JOIN BUILDING AS All
ON A11.ID = A1@.FK_ID_BUILDING) LEFT JOIN FACULTY
ON FACULTY.ID = CLASS.FK_ID_FACULTY) LEFT JOIN PERSON AS Al13
ON A13.ID = FACULTY.FK_ID_PERSON) LEFT JOIN CLASSROOMSTANDARDSCHEDULE
ON CLASSROOMSTANDARDSCHEDULE.TD = CLASS.FKIDCLASSROOMSTAND) LEFT JOIN SURVEYQUESTIONAIRE
ON SURVEYQUESTIONAIRE.ID = CLASS.FKIDSURVEYQUESTION) LEFT JOIN SCHOOL
ON SCHOOL.ID = CLASS.FK_TD_SCHOOL)
WHERE (CLASS.ID = 124135)

SELECT COURSETOPIC.ID, COURSETOPIC.z_NUMBER, COURSETOPIC.TITLE, COURSETOPIC.STATUS, COURSETOPIC.FK_ID_COURSE
FROM COURSETOPIC
WHERE (COURSETOPIC.FK_ID_COURSE = ?)

SELECT COURSE.ID, COURSE.z_NUMBER, COURSE.TITLE, COURSE.FKIDSURVEYQUESTION, COURSE.FK_ID_COLLEGE, COURSE.FK_ID_COLLEGEY
FROM (MM_COURSE_ISCROSSLISTDFR_COURS LEFT JOIN COURSE

ON COURSE.ID = MM_COURSE_ISCROSSLISTDFR_COURS.FK_ID_COURSE@2)
WHERE (MM_COURSE_ISCROSSLISTDFR_COURS.FK_ID_COURSE = ?)

SELECT GENEDREQUIREMENT.ID, GENEDREQUIREMENT.NAME, GENEDREQUIREMENT.FKIDADMINISTRATIVE
FROM (MM_COURSE_HAS_GENEDREQUIREMENT LEFT JOIN GENEDREQUIREMENT

ON GENEDREQUIREMENT.ID = MM_COURSE_HAS_GENEDREQUIREMENT.FKIDGENEDREQUIREME)
WHERE (MM_COURSE_HAS_GENEDREQUIREMENT.FK_ID_COURSE = ?)

SELECT ENROLLMENTORFOREIGNEQUIVALENT.ID, ENROLLMENTORFOREIGNEQUIVALENT.STATUS, ENROLLMENTORFOREIGNEQUIVALENT.DROPPEDDAT
ENROLLMENTORFOREIGNEQUIVALENT.RESERVEDSEATFLAG, ENROLLMENTORFOREIGNEQUIVALENT.TAKINGCLASSTYPE, ENROLLMENTORFOREIGNEQUIV
ENROLLMENTORFOREIGNEQUIVALENT.PREREQSNOTMET, ENROLLMENTORFOREIGNEQUIVALENT.FACULTYENTERDFNLGR, ENROLLMENTORFOREIGNEQUIV
ENROLLMENTORFOREIGNEQUIVALENT.LS_ENROLLMENTID, ENROLLMENTORFOREIGNEQUIVALENT.FK_ID_CLASS, ENROLLMENTORFOREIGNEQUIVALENT

External Data Formats: The source of an IC Object can be any one of multiple external data
formats/files, such as XML files, JSON work areas, CSV files or fixed-format files. A single
Activate statement is usually all that is necessary to read the data into memory as the extension
definitions to the information tree usually specify the data necessary for the Activate. Fixed-
format files require a special operation to define the position of each attribute value in the
record. Regardless of the source of the data in such an IC Object, the data can be written out to

a format different from the source with a single Commit statement.

Sample IC Object Definition for an XML File Structure: The sample below shows part of an IC
Object definition of a COD XML file for a financial aid application received from the federal
government. The attribute list is shown for the selected DLUnsubsidized entity, along with their
assigned Domains. (The DLUnsubsidized subobject contains data defining application for an
unsubsidized loan.) All the detail and complexity contained in such an XML file is very difficult to
understand and process without the visual aid and processing functions of an information tree.

= Entity Attribute List - DLUnsubsidized X
No | Attibude Name Doman Name
...... 1 Froncelwades _ Ted
2 CFS Transachonbumber Text
3 FinancialAwardamount Reverue
4 Awardkey Integer
5 DependencyStatusCode Tent
§ EnlianceCounseing Text
7 DefaulDverpayCode Tent
8 DLUnsubNotezzz XML_SubenttyPosi
9 FinancioliwardNumber Tent
10 FinancialowardlD Tent
11 FinsncisliwardCreateD ate Tent
12 HPPAIndicator Text
13 AddiionalUnsubsidizedE ligibt Tent
14 PreprofessionalCourseworkindicat Test
15 AbiltyT oBeneiiCode Tent
16 StudentEbgibiiyCode Text
=
=
< > |

i
i

Temporary Work Data: An IC Object can be a made up entirely of temporary work entities and
relationships or temporary work components can be added to any IC Object activated from a
database or an external source. In fact, almost all complex IC Objects from a database have
work components (called subobjects) that are created from process rules and add important
meaning to the object.

Sample Work IC Object Definition: The sample below shows part of an IC Object where the
entities are never read or written from any database or file, but are only maintained as
temporary work-in-progress data. Though most of the components are simple work entities,
there are entities defined in the ER Data Model, such as the highlighted entity,
FinancialAccountTransaction and its children RefundPerson and RefundPersonStudent. They
contain temporary work data for database data that is being processed but not written.

Q Entity Attribute List - FinancialAccountTr...

No | Attribute Name Domain Narne

Integer
Fnau_d&wlTlnl’vpu

Sample Work IC Object Definition: The sample below shows part of the IC Object displayed
earlier of updatable class data in a Student Information System library. Though most of the
entities shown are read/written to/from the database, the selected DisplayEnrollment
subobject is temporary work data used for displaying selected Enroliment data.

S5 Entity Attribute List - DisplayEnroliment

No | Attibute Name Domain Name

11 dDisplayFinalGirade

12 Deli ClassD
13 dDisplayMidtermGr... Text
14 MidtermGradePoint Decimal
<

Il. Derived Attributes

A particularly valuable extension to the information tree is the concept of a derived attribute,
which is an attribute defined on an entity in an IC Object through a Process Rule. What makes
derived attributes so powerful is that they are visualized and utilized as just another attribute in
the object, whether presented on an interface or used in a processing rule. It is another
example of the IC objects introducing consistency in data/information handling throughout the
system.

The rules for defining a derived attribute can be either procedural or nonprocedural, as
explained in the section, Business Processing Rules, later in this document.

Sample Attribute List Containing a Number of Derived Attributes: Note that it is the convention
of this application to prefix all derived attributes with the lower-case “d” and all work attributes
with the lower-case “w”. This is simply a common convention, however, and has no actual
significance in derived attribute processing.

ﬁ(:E A
crupde
inc.axe
Lol No | Attribute Name | Domain Name ~
38 PaymentPlanProvider Test
= 39 PaymentPlanPLCo.. Test —
40 dBalance Revenue _—
41 dTotalCreditHours Decimal2
- 42 dTotalCharges Revenue
crmse || 43 dClassCharges Revenue
44 dPapamountFee Revenue
45 dPayTotahwithFee Revenue
46 dDateDfLastPayment Date
47 dCurrentBalance Revenue
48 dCurentTermSessi.. Integer | E————
——— — e 49 dDaleUfLastA_clivity Date
: B | - SAT. Paymen- |pase 50 dTota!SACrednls Revenue
CreatingUser tPlanLineAssigl 51 dCreditsEnComplP... Decimal2
User gmeriPiartinahssigng 52 dCreditsEnComplP... Decimal2
53 dCreditsEnComplP... Decimal2
54 dClassestuditedYear Integer
55 dClassesNotaudite... Integer
56 wOrigHealthlnsura... Y/N
57 wilrigMealPlanwai.. /N
BN cebdm i de e d AL
< >

o . =3 inc axe
inc SACombine paec
TermClass | Code

lll. Duplicate Entities Down Different Paths

One important variation of an information tree from a regular data tree is that the same
instance of an entity can occur in one IC Object down different relationship paths. Though not
as common as derived attributes, it is critical when needed, because some information cannot
be fully defined except by containing more than one relationship to the same entity instance
within the same object.

Sample Billing IC Object: An example occurs below in an IC Object used for generating billing
transactions in the Student Information System application. The root entity of the object is
StudentAccountProfile, which anchors all the billing data for a student. Part of the data
necessary for billing (but maintained through another object) is the BillingPeriod subobiject,
which identifies Payment Plan information for that student and college term. When a billing
rule generates a billing transaction (StudentAccountTransApplied subobject in the object
below), that transaction must be tied to the correct BillingPeriod. This is accomplished by
including the current BillingPeriod entity in the object as the TransactionBillingPeriod, which
pulls along the BillingPeriod CollegeTerm and CollegeYear data with it. Though the data in the
entities is the same, the meaning is slightly different depending on the path. The data down the
BillingPeriod path identifies period data that is currently being processing during billing. The
data down the StudentAccountTransAppled path identifies the period data for which the
transaction was identified. Both are necessary for proper understanding and processing.

BillingPericd

BunrgPenos

= s
BillingPeriod
CollegeTerm

Consgerm

IV. Includable Subobjects as Parts of an Information Tree

One nonintuitive capability of an information tree is the definition of subobjects (subtree
structures) as part of an object that can be “included” from a similar subobject in either a
separate object or in another path in the same object. This allows object data (represented as a
subobject, the target) to be built in memory (using the work-in-progress capability of IC
Objects) from data (a subobject, the source) in either the same or another object using a single
“Include” command within a processing rule or from an include function on an interface, such
as a combo box. Actually, combo boxes are often used in this manner, where the source of the
include is represented in the control as the drop-down list of an identifying value in the root of
the subobject and the target of the include is the same identifying value of the included
subobject. Note that the identifying values in both the source and the target can be derived
attributes.

Sample IC Object Showing Included Person Subobject: The example below is for a Prospect
maintenance object, where a new prospect record for a former student is created by including
the Person subobject from another IC Object containing that information. A single Include from
either a processing statement or an interface control brings over all the data from the source
object to the target object, populating all the data in the modified IC Object, which can then be
displayed directly on human interfaces or used in processing rules.

= = TRy T e =T o TET BT)oas Ch= ow AT Yo

cAdtivity Envoliment FinAigAdmin FAISIR FinidAward
sowpary L Bepggm man meau:J
R T TEET e TRy Ty TREE T Y TR o T o TER s TR Yo
StudentConts- FAISIREigibil- -
User dAdivityDogun Event Class CollegeYesr FAISIRParent ity FAISIRSchool FinAidSource
e Document Evort Dass Colegetear FasEraes) FASFEIghin Fusmscon) Erficsose

V. IC Object Support of Work-In-Progress Processing

A critical function of all maintenance applications and an important part of many complex
business processes is the automation and management of work-in-progress data (sometimes
called support for the “long-business transaction problem”). Regardless of the source of data
that needs to be processed and/or modified, work-in-progress processing supports the
management of data in memory, freeing the application from having to keep track of modified
data through its own processing rules. IC Objects do all of this automatically so that application
processing rules or human interfaces need only add, delete or update entity components. At
the end of the process/transaction, the application rules need only either “cancel” the work-in-
progress object or “commit” it back to its source, either function accomplished with a single
statement.

Sample Work IC Object Definition: The sample class maintenance object shown earlier and
below is an example of a work-in-progress object. Either through processing rules or an
interactive set of update web pages, Class, Enrollment and StudentWaitlisted entries are
created and Course, CollegeTerm, Room and Instructor subobjects are included from other IC
Objects. At the end of the series of interactions, the application user specifies a function (ie.,
strikes a button) that either cancels the object (dropping it from memory) or saves the object,
executing the necessary SQL calls to add, delete and update to the database all changes made
to the work-in-progress object instance.

- . T o A T
No | Attribute Name | Domain Name I Waitlisted Instructor DisplayStucen-
11D Integer StudentPerson Employse tPerson
2 LasiName GeneralName_Address =

3 FiestNarme GeneraName_Address
4 MiddieNarme GeneralName_Address
5 Suffix GeneralName_Address
& HomePhone PhoneNumber o me Lt
7 MobilePhone PhoneNumber DirectoryRestri- DisplayDirectc-

8 eMaildddress EMaiAddress o fyRestrictions

9 CampusiD CampusiD

10 dFulNamelFM Test

VI. Recursive Subobject Processing

A fairly rare data requirement, but one that is critical when needed, is the recursive processing
of data through the same relationship. Actually, it plays a very important role in ICA because
some of the meta objects (particularly the IC Object definition for IC Objects) require it for
navigating the tree structure of information trees. The first sample below shows the recursive
subobject structure used in the definition of an IC Object. Note that the two entities,
“LOD_EntityParent” and “LOD_EntityChild” are for the same entity, “LOD_Entity” in the data
model and that the detail for the highlighted LOD_EntityChild entry has the checkbox titled
“Recursive” selected. During execution, the recursive structure is navigated through the
SetViewToSubobject(View, “LOD_EntityChild”) operation, which continues to step down and
up through the recursive relationship. The second and third samples below show a run-time
display of such an object using the tool’s Object Browser. The first of the two shows the object
before stepping down the recursive relationship and the second after stepping back up.

:E Object Entity Detail X
Nanme: XML Name
Desc Cancel

Mext
Prev
Runtime Permissions Specification Dptions
Delete
¥ Create ' Update ™ Include ™ Derived ™ Work
[7 Delte 7 Canbeincluded [Exclude ¥ Recursive
™ Dup Entity Instance
Constraints via Operation
™ Dup Relationship Instance
l ﬂ 4| ™ Lazy Load (Incremental Load)
L Accop [Custe [nclde Parent Delele Behavior
M Cancel [Delete [Exclude [Delete =
Data Locking Multiple E ntity Instance Limit

I R

ER Detail
Entity Narme: |LOD_Entity LI
Relationship: [pavent of Mol

i

At
Mior

i

Sample Object Browser Display of Recursive Relationship Before Stepping Down: Note that the
LOD_EntityParent entity instance is for “Class” and the LOD_EntityChild entity instance is for
“Course”. Also, note that other entity instances in the object are visible in the lower right
corner of the display.

Sample Object Browser Display of Recursive Relationship After Stepping Down: Note that the
LOD_EntityParent entity instance is for “Course” (the LOD_EntityChild entry in the previous
display) and the LOD_EntityChild entity instance is for “CourseTopic”, one step down the
recursive relationship. Also, note that other entity instances in the object are NOT visible in the
lower right corner of the display as we’re stepping only through the recursive structure.

VII. Data Integrity and Object Validation

Managing data integrity through the IC Object definition is critical both because ensuring data
integrity is crucial to business application processing and the programming tasks normally
required to assure such integrity are often time-consuming, obscure and incomplete. IC Objects
assist, document and automate that task in three ways:

1. As defined earlier in this document, a Domain is assigned to each attribute in an IC
Object, which specifies (either through a list or algorithm) all the internal and external
values that an attribute can be assigned. It is thus impossible to assign a value to an
attribute that violates the Domain rule.

2. As defined later in this document under Business Processing Rules, procedural or
nonprocedural rules can be defined to validate complex interactions between object
data components.

3. Runtime Permissions are assigned to each entity in an IC Object to control what
database maintenance actions are allowed to maintain data through that object. The
basic permissions are read, create, update, delete and include. To assist in
documentation and understanding, colors are assigned to each of the three most
common conditions in the visual display: green for create/delete, yellow for include and
gray for read-only. This allows anyone reviewing the documentation to get a quick
overview on how the object is used relative to the application as a whole.

Class IC Object Display Shown Earlier in this Document: Note that only 3 entities can be
created for the object, with most data being pulled in by including data from other objects.

1 £ Nazsls - Logical Object Definition - mClassDemo B O .

File Edit View Display Reports Help

VIII. Cascading Delete Rules

Runtime permissions also include what is called Parent Delete Behavior, which is necessary to
control and automate the deleting of related data within a long business transaction. There are
two issues:

1. The control over what entities can be deleted within an IC Object for maintaining data
integrity as covered in the previous section.

2. The documentation and implementation for deleting other entities and relationships
tied to an entity when that entity is deleted.

If an entity’s Parent Delete Behavior is “Restrict”, then a validation error will occur if the parent
entity is deleted. If an entity’s Parent Delete Behavior is “Delete”, then that entity will be
automatically deleted when its parent in the IC Object is deleted. If an entity’s Parent Delete
Behavior is “Exclude”, then that entity will be automatically excluded (meaning its relationship
will be severed) when its parent in the IC Object is deleted.

Sample Parent Delete Behavior of Exclude and Restrict: In the first sample below, the behavior
of Exclude means that the relationship to the Person entity is removed if the Faculty entry is
deleted. In the second sample below, the behavior of Restrict means the Faculty entry cannot
be deleted if it is tied to a Class entry (ie., the faculty member is an instructor for a class.

Specification Options
[T Derived ™ Work

[T Recursive
™ Dup Entity Instance
iz s can be fed back 10 (Om)) incexe = insruckr for (0m)) pres = part of (Q.1) incenc bz shud
pexc pesc ClassAslinstru- Administrativ- [pee [Sludenll‘ [Dup Relationship Instance
Category ctor eDivision DegreeT)
[Lazy Load (Incremental Load)

Class AdmovsrmeDoson Stcerilaa D
Parent Delete Behavior:

[Exclude ﬂ

Cavery

Specification Options

™ Derived ™ Work
™ Recursive

™ Dup Entity Instance

[Dup Relationship Instance

ne exc =

L [Studer ™ Lazy Load (Incremental Load)

Degret .
i Parent Delete Behavior:

‘ — IHeslrict ﬂ

=a(11) inc e ‘can be Sed back 10 (0m)) incjexe = part ol (0,1)
pec pesc Administrativ-

Person Category eDivision
Person Cateyry

Sample Parent Delete Behavior, Including Cascading Delete: The sample below presents
examples of each kind of parent delete behavior when the root entity, DegreeTrack, is deleted.
When a single Delete command on the root entity, DegreeTrack, is executed, either through a
procedural or nonprocedural command, all Restrict rules are validated. Thus, if a Student entity
exists in the IC Object, its parent entity, StudentMajorDegreeTrack, cannot be deleted, which in
turn means its parent DegreeTrack cannot be deleted and the Delete command will fail with an
error code. If there is no error on the Delete command, the DegreeTrack entity in the work-in-
progress object is flagged for delete.

When a Commit command is executed on the IC Object instance, the other delete rules are
triggered, which in this case means the DegreeMajor, CollegeYear and CollegeDegree entities
are excluded (ie., their relationships are deleted). Also, all DegreeTrackRequiredGroup entries
and their children, RequiredGroup, RequiredGroupEntry, RequiredGroupSubGroup and
RequiredGroupSubEntry, which have a Parent Delete Rule of Delete, will be deleted and the
two children, RequiredGroupCourse and RequiredSubGroupCourse will be excluded.

The result of this auto behavior, driven by the Parent Delete Behavior of the IC Object, is much
clearer documentation of the rules, the elimination of the normal programming effort to
execute such rules and improved integrity resulting from the visual and more understandable
rule specification.

oo 1) inc.ane Pt O 1) inc.auc oF 0. 1) f.

peoac e =
DegreeMasjor CollegeYear CollegeDegree equiredGroup | D Track i
Dogreshaior CollegeDeges Lﬂlmn!J Lm!J

College Yoar

=2 | p—- £ Fas O] ores
reehsjor eeYesrDats
)
College
Coil

sge) _ Cogeovesta J

SA T) pees {~ Fasal pres

College DegreeYear

GradeScsle GradeScsale
GaceScaie GraseScaie ’

Regquired ‘ e
GroupCourse

Couse

Requirehéub-
GroupCourse

IX. Business Processing Rules

As has been discovered in billing interfaces used by at least one of the leading health care
systems, a data tree structure lends itself to the definition of high-level business rules. That
characteristic is effectively used with the information tree structures of ICDP to specify rules for
a number of purposes, as shown in this section and the section that follows. Those business
rules are defined in ICDP using two different techniques. The first technique specifies rules
through nonprocedural definitions defined against an IC Object, as shown in the three
“Nonprocedural...” examples below. The second technique utilizes procedural rules, also
defined against an IC Object, as described in the “Procedural Rules” section that follows.

The first nonprocedural example is for the specification of a billing rule defined against the IC
Object shown below under “Billing Sample IC Object.” That nonprocedural example is shown on
two sample pages: The sample first page, shown below under “Nonprocedural Rule Billing
Example Interface,” defines a Boolean rule and each component of the Boolean statement. The
second sample page, shown below under “Nonprocedural Rule Query Example Interface,”
presents a selectable version of a billing IC object containing the information that can be used
within a billing rule, along with the entity/attribute rule criteria created from that object.
Entries from the “Entity/Attribute” data group are selected when adding a Boolean statement
to the “Criteria” data group.

The second nonprocedural example, shown below under “Nonprocedural Rule Query Example
Interface,” is for a Query definition that is a part of the CRM reusable library. The interface is
similar to that of billing, except that the top data group defines the data to be returned from
the query and the second data group defines the Boolean rule (query criteria) which qualifies
the data being returned. The third data group defines the selectable structure and data of the
IC query object.

The third nonprocedural example is from the ICDP Tool Set itself and defines the rule
generating a “derived attribute” for an object. Because the Tool Set runs as an MS Windows
system, the layout of the window is quite different. Also, the rule structure itself is more
flexible as it is comprised of a calculation set containing both a condition Boolean statement,
“Rule Criteria”, and a calculation statement, “Rule Calculation.” The condition statement
provides qualification for the calculation statement. Note that, though the use is different, the
information tree structure and rule definition content are much the same.

Billing Sample IC Object — SIS Student Accounts Billing

The following is part of the diagram for a rigorous IC Object for billing in a large Student
Information System. The object definition (which contains more than 100 entity components)
supports a visual understanding of the necessary data structures and processing rules to
manage and automate a very complex billing problem. The data relationships behind such a
complex problem are almost impossible to understand and automate without an effective
visual image of those relationships as implemented in ICDP using the information tree
structure.

ﬁ NazsIS - Logical Object Definition - mSAProf -
File Edit View Display Reports Help

Nonprocedural Rule Billing Example Interface

As noted above, this example has two sections. The top section defines a Boolean rule and each
component of the Boolean statement. The second section defines the structure and data of the
IC object containing the information that can be used within a billing rule. Entries from the
second section are selected to be added to the first.

StudentAccounts > Administration > Rule Set Qualification Save & Return ; Return

Description Tuition - Audits - Uses Refund Level Rules
Generate Charges for Full Year (ie, All Terms in Year) [
O

Generate Charges Using Term Amounts for Student Entry Year

Use Special Billing Charge Rule | Tuition: Charge Per Credit with Refund Level v Help
Charge Amount Factor MSAProf PeriodCollegeTerm dClassesAudited Select

Derived Expression (Default is AND's if no Boolean) C1

Boolean Expression (of form "(C1 OR C2) AND C3")

50 @
1-1/1 < .
Condition Attributes Operator Value Action Scope Delete Update Duplicate

Duplicat
c L PeriodCollegeTerm.dClassesAudited 0 vl ‘ - x =
1-1/1 < n >

StudentAccountProfile
200 = 200 @
1-132/132 < - 1-65/65 < -
] Entity Select m] Attribute

Add
StudentAccountProfile 10 O D

....Student 10 m] Note Add
<maPerson Select @] BalanceForward Add

csmnnn FINAIAPrOfile Select m] AccountBalance Add

Nonprocedural Rule Query Example Interface

As noted above, this second nonprocedural example is for a Query definition that is a part of
the CRM reusable library. The interface is similar to that of billing, except that the top section
(“Criteria”) defines the Boolean rule which qualifies the data being returned and the second
section (“Display Options”) defines the data to be returned from the query. The third section
defines the structure and data of the IC query object.

StudentAccounts > Reports > Query Detail Resync | Save & Retun | Retum

Open All | Close All

Condition Attributes Operator Value External Value Action Scope Subselect Qualification Delete Update Duplicate

= 2020-09-01 AND
ci GraduationDate Date subselect v ANY ~ Student i <= 2021-02-05 bt = @

1-4/4
Attributes Display Force Read Format Max Cardinality As 1 Column Header Display Order Display Length Sort Order
—Person CampusiD m] C CampusiD 1

Person dFullNameL FM] Student Name 2 1
Date
Year

e 1- 050768

Entities Mare Infe Attributes Add
Student (0-m) Mere Info o

Person (0-1) More Infa Stat
s diclress (0-1) CurrentLevel

wmurlDEMOGrAPhiCS (0-1)

eMailAddress

Prospect (0-m)

‘ oMl :l:H: I

Nonprocedural Rule Derived Attribute Interface

In the example below, the Rule Criteria, C1, identifies the repeated EnrollmentWaiverTransfer

entries (“Loop”) where the Rule Calculation “Sum” is applied for Status values “T” or “C”".

) :ﬁ Derived Attribute Calculation Set Update
)

Description:

|Total Credits for "T" [Enrolled) and "'C"* [Completed) Student Enroliment Entries

Rule Criteria: Im

Rule Calculation |'32

Cancel

~ Rule Set Parameters

ok |
[Coned |
|

") ThirdMajorChaice
{7} Church
~{_7) AdministrativeDivision

=) Class
=) Course
- {77 College
=-{") CollegeTem
{2 Collegeear
=) Faculty
D FacultyPrmaryCampusLocation

o TN - Ty R

GradUndergradOverrideFlag
dColleqeType

Parm<... I Entity / Attribute l Qual I Value l Sub Action I Scope
C1 Enrollment\w aiverT ransfer. Status Subselect “T"0R "C" Loop
c2 Enrollmentw aiverTransfer. CreditHours Sum
— Potential Rule Set Entity / Attibutes
=) Student A~ | Attribute
[={") Person D
) Address DeliveryMethad
-{7) Demographics FinalGradePct
E1{) Prospect FinalGradePoint
z Status
=1+ Counselor)
T = FinalGrade
{7 CounselorPerson TakingClassType
{7 FirstMajorChoice CreditHours
{7 SecondMajorChoice DrappedD ate

Procedural Business Rules

There are limitations of the nonprocedural definitions in handling very complex rules. So, ICDP
utilizes the normal structure of procedural rules (ie., program structure) to define very complex
algorithms. However, it is important to note that those procedural statements reference IC
Objects through that same consistent information tree structure as used in the high-level rules.

Thus an “IF” statement can reference an attribute as an object/entity/attribute combination:
IF mPerson.Person.LastName = “Smith”
IF mPerson.Person.LastName = IContactList.Contactltem.PersonLastName
A loop statement references an entity and/or entity/attribute combination:
FOR EACH mPerson.Address
FOR EACH mPerson.FamilyRole WHERE mPerson.FamilyRole.LivesWith = “Y”
Position can be changed within an object instance:
SET CURSOR FIRST mPerson.FamilyRole WHERE mPerson.FamilyRole.LivesWith = “Y”

All the data for an object instance can be accessed with a single read statement, which not only
generates all the SQL necessary to access the data, but sets up a work-in-progress object area in
memory to hold the data while it is being processed:

ACTIVATE mPerson WHERE mPerson.ID = |ContactList.Person.ID

Also, a single statement is all that is necessary to update the database with all the modified,
added and deleted data that has been accumulated in a work-in-progress object.

COMMIT mPerson

Again, although the structure of those statements is procedural, they have all the power of
being defined against the information tree structure of the IC Object, producing dramatic
improvements in productivity and in the understanding of complex business rules.

X. Human Interface Mapping

One of the major development tasks in business applications is the design and construction of
the human interfaces that will present information to a user and allow that user to interact with
the system. The information tree structure and extensions of ICA makes that a design-level
visual experience and automates most of the detail required to build those interfaces that
would normally be required using traditional programming techniques. The following shows
how ICA addresses three different types of human interfaces: interactive Dialogs, Merge
Documents/Emails and Graphs.

Dialogs

Dialogs are groups of web pages or other interactive human interfaces to present and capture
information from a user and guide that user through the online experience. In ICA, each page of
a dialog is specified visually in that each individual control is “painted” on a frame representing
the interactive page of the generated application. Each control references part of an IC Object
by its object identifier (ie., its Object View Name) and its Entity Name and/or Attribute Name.
Domain information tied to an attribute is used for formatting the data in the control.

Sample Table Domain Combo Box Control: In the following example, a combo box specifying
“Citizenship” is placed on a group within a page (first image) and mapped to a single attribute,
“mPerson.Demographics.CitizenshipCode” (second image). The table domain associated with
the attribute formats the drop-down list during execution (third image).

Profile

Historical ID E thnicity v Primary Language =
Alien Reg Number Citizenship -|7 Nation Of Citizenship -
- 777s | s
Wisa Classification v Occupation Date of Birth 5/27/2022 -
Title Gender - City of Birth
Birth Country Marital Status = Maiden Name
Previous Name Deceased Date 5/27/2022 - |F Deceased
&Combo Box Control Type - Domain
Tag:
Type: [Domain =l ———— -]
Style: | Drop Down List ~] A
N Ethnicity American Indian/Alaska Ntv (N/Centra v
ext: [i bbb 7
™ Sort Presented List ™ User Specified List Cltlzenshlp Natural Born Citizen
™ No Null Entry In List SEE |
) Occupation
AtrbLte Mapping Natural Born Citizen
Wiew: [mPerson Gender

Naturalized Citizen
Nonresident Alien

Attribute: [CitizenshipCode AL 4 Resident Alien
Contet | =] | Deceased D -

E ntity: |Demuglaphit:s

.‘ VMarital Sta

Sample Includable Subobject Combo Box Control: In the following example, a combo box
specifying “Billing Year” is placed on a group within a page (first image). The combo box detail
(second image) identifies an “Automatic Include” function from object mYearLST to billing
object mSAProf (part of which is shown in fourth image). The result during execution is shown
in the third image. The definition of the combo box and the functionality of the IC Objects is all
that is necessary to generate the solution into a target physical environment.

Given Name Middle Name
Preferred Name Campus D
Govemment D | Financial Hold Date | 5/27,202; ~ |
Financial Hold | ;I Home Phone
Preferred Email | |Primary Campus
work Phone |Flesidemy
54 Cleared |Bil'r|g Year
IR R

IFamin MName

A Combo Box Control Type - Select
Tag ~ Edit Control Mapping
View:
: Type: | Automatic Include | Eniy ::r::emi S
Style: |Drup Down List ~| "
Text: | o e
™ Sort Presented List Contest | =
I No Nuil Entry In List ~ List Box Mapping
List Box Entity Mappi View: |mvearl ST
Entity: | ~>| | | Enty [Eollegeear
Scope: | ||| Atibute: frear
[Scope Object Instance Contet: | =l

£E Entity Attribute List - CurrentDegreeEntry... X

No | Attibute Name Domain Name

11D

2 Year
3 BeginDate
4 EndDate

Merge Documents/Emails

Merge Documents and Merge Emails are accomplished by creating a document template
through an editor such as MS Word or ODT. The template can contain all of the formatting
capability of the editor and is initially created with sample data. When that initial file is
complete, the sample data is replaced with mapping attributes from an IC Object, including
repeating data, similar to list boxes in dialogs and derived and work data within the object. A
template example for a financial aid letter to a student is shown below in the first image. Note
the specification for repeating AwardLetterFederal COAltem entity data.

n:ﬁqq [Z:CollegeYear.Year]

Award Notification

tZ:Person.dTodayl IMU ID#: [Z:Person.CampuslID]

[Z:Person.dFullName]
[Z:Address.dFullAddress]

Cost of the [Z:CollegeYear.Year] Academic Year

Imaginary U
Estimated Institutional Costs (S[Z:AwardLetterFederal.CostOfAttendanceTotal]) 125 years | = | I
Fall Spring Full Year educating for
[Z:#5:AwardLetterFederal COAltem][Z:AwardLetterFederalCOAltem.Description] success

[Z:AwardLetterFederal COAltem.FallAmount][Z:AwardLetterFederal COAltemn.SpringAmount]
[Z:AwardLetterFederalCOAltem.Amount]

[2:#E] . “For | know the
Grants and Scholarships thoughts that | think
Total Grants and Scholarship($[Z:AwardLetterFederal.GrantsAndScholarshipsTotal] toward you, says the

Fall Spring Full Year Lord, thoughts of

[Z:#5:AwardLetterFederalGrant][Z:AwardLetterFederalGrant.Description] peace and not Of evil

[Z:AwardLetterFederalGrant.FallAmount][Z:AwardLetterFederalGrant.SpringAmount] ’

[Z:AwardLetterFederalGrant.Amount] to gfve you afuture

Z:#HE

fewel and a hope.”
Net Cgsts . (S[Z:AwardLetterFederal.NetCosts]) Jerermiah 29:11
Cost minus grants and scholarships Fall Spring Full Year

[Z:AwardlLetterFederal.NetCostsFall|[Z:AwardLetterFederal.NetCostsSpring]
[Z:AwardLetterFederal .NetCosts]
OPtions to Pav Net cOsts Knowledge. Faith. Service.
Work Options (S[Z:AwardLetterFederal.WorkOptionsTotal])

Federal/Texas Work-Study or regular campus student wages (must work to earn)
(8[Z:Awardl etterFederal. WorkOptionsTotal])
Fall Spring Full Year
[Z:AwardLetterFederal. WorkOptionsFall][Z:AwardLetterFederal.WorkOptionsSpring]
[Z:AwardLetterFederal.WorkOptionsTotal]
Loan Options ($[Z:AwardLetterFederal.LoanOptionsTotal])

Fall Spring Full Year
[Z:#S:AwardLetterFederalLoan][Z:AwardLetterFederalLoan.Description] [Z:AwardLetterFederalLoan.FallAmount]
[Z:AwardLetterFederalLoan.SpringAmount][Z:AwardLetterFederalLoan.Amount]

[Z:#E]
Final Net Costs ($[Z:AwardLetterFederal.FinalNetCosts])
Cost of attendance minus scholarships, grants,
estimated work study and loans Fall Spring Full Year

[Z:AwardLetterFederal.FinalNetCostsFall][Z:AwardLetterFederal.FinalNetCostsSpring]
[Z:AwardLetterFederal.FinalNetCosts]

Other Options

The next image shows a sample document generated from the template and the information

within a financial aid IC Object instance. The information tree extensions provide a design-level

capability that makes it straight-forward to use the power of the word processing function for

generating finely formatted documents. The same capability can be used for generating emails.

=

2021-2022

Award Notification

laugust 13, 2021

William Martin
9644 Nothing Road
Houston , TX 77088

Cost of the 2021-2022 Academic Year

Estimated Institutional Costs

($31,608.00)

Fall Spring Full Year
Tuition 11,424.00 11,424.00 22,848.00
SA Fee 110.00 110.00 220.00
Technology Fee 220.00 220.00 440.00
Room and Board - On Campus 4,050.00 4,050.00 8,100.00
Grants and Scholarships
Total Grants and Scholarship ($7,000.00)
Fall Spring Full Year
Achievement Award 1,000.00 1,000.00 2,000.00
Achievement Award+ 500.00 500.00 1,000.00
Leadership Scholarship- Church 500.00 500.00 1,000.00
Imaginary U - Freshman Scholarship 1,500.00 1,500.00 3,000.00
Net Costs ($24,608.00)
Cost minus grants and scholarships Fall Spring Full Year
12,304.00 12,304.00 24,608.00
Options to Pay Net Costs
Work Options (52,200.00)
Federal/Texas Work-Study or regular campus student wages (must work to earn) (52,200.00)
Fall Spring Full Year
1,100.00 1,100.00 2,200.00
Loan Options (55,500.00)
Fall Spring Full Year
Federal Unsubsidized Direct Loan 2,750.00 2,750.00 5,500.00

Final Net Costs

($16,908.00)

Cost of attendance minus scholarships, grants,

estimated work study and loans

Fall Spring Full Year

8,454.00 8,454.00 16,908.00

Other Options

+ Davmant Plan nffarad hv Imaainandd |

« Militars and/ar Natinanal Sarnvica hanafite

IMU ID#: 269778

Imaginary U ﬁ
125 years _—
educating for
Success

“For | know the
thoughts that I think
toward you, says the

Lord, thoughts of

peace and not of evil,
to give you a future
and a hope.”

Jeremiah 29:11

Knowledge. Faith. Service.

5 Display Settin

Graphics

Graphic images are generated in ICA based upon the structure of a subobject within an IC
Object. Different graphic images require different structures, but the most common images
such as pie charts and single level bar charts just require a 2-level subobject (ie., a child under a
parent). On the other hand, a 2-level bar chart requires a 3-level subobject. The first image
below shows the IC Object for adding summary extensions to a Query Object and contains both
a 2-level and 3-level subobject. The second image below shows part of a truck routing IC Object
for formatting a Google map with routing information using common position data from the
from/to Deliver Leg information.

:fi Entity Attribute List - Dis...

e Decimal3
3 StingValue Text

= Entity Attribute List - Deliveryleg X

11D

2 TripStandardinMinutes

3 DistancelnMiles

4 ExpectedStatDateTime

5 ExpectedEndD ateTime

6 ActualStartDateTime

7 ActualEndDateTime

8 ExpectedLoadTimeMinutes

9 ExpectedUnloadTimeMinutes Integer
10 ActualLoadTimeMinutes Integer
11 ActualUnloadTimeMinutes |

13 dToLocation Test

< I

Dashboards

When graphics images are combined with Query functionality, easy to use/change dashboards
can be added to any ICA application, creating the kinds of images shown below.

Student Count by Degree Major

@ Biblical Languages

@ Chaplaincy

@ Christian Education
@ Cross-Cultural Minis

@ DMIN
@ DMIN EML
@® DMIN ILCC
@ DMIN SFAD
® General
12V
LastRun = 01/04/2022 10:16 AM Show Detail | Run
Programs with total active students
2015-17 Master of Difr___ []
Certificate (Church f__
Certificate in Chap| [
Certificate in Chris &=
Certificate in Cross e
Certificate in Old T =
Diploma in Church Pl =
DMIN [
DMin ILCC
MAin Intercultural = __
Master of Arts in Tr
Master of Divinity
MDIV (Diploma Cross- =
0 20 40 60 80 100 120

Total Enroliments

XI. Server-to-Server Communication

A growing requirement for business applications running in the cloud is the communication of
information between cloud servers that need to share selective information. The ICA
implementation uses information trees to enable this function, passing IC Objects across
servers and using their integrity and processing capabilities to support and automate execution.
Any IC Object can be sent from one server and processed by another as long as both servers
have a copy of the IC Object definition. The structure and processing rules defined in the object
enable execution. The integrity rules imbedded in the object definition manage integrity. For
example, when a receiving server processes an IC Object and returns it to the sending server,
there is nothing it can do that will cause the source data to be incorrectly updated because the
sending server also has a definition of the integrity rules for the object and will only process the
data accordingly.

Samples of Communicating IC Object Information to Another Server: The first sample below
shows a web page for identifying proposed course offerings from remote schools that can be
accepted for sharing by the host school. On striking the Send button, the user is taken to the
second page where the IC Object for that information is edited and sent to the necessary other
schools using a single SendObjectToServer operation.

0 % Send | Save , Add

1-6/6 n
School Course Number Title Credits Accepted Date Delete
NTS ACC101 Fundamentals of Accounting | 3.00 01/25/2022 x
NTS ACC102 Fundamentals of Accounting Il 3.00 0172572022 *
NTS ACC105 Financial Accounting 3.00 01/25/2022 *
NTS ACC200 Cost Accounting 3.00 01/25/2022 x
NTS ACC301 International Accounting | 3.00 02/0472022 *®
NTS ACC302 Environmental Accounting 3.00 02/04/2022 %

1-6/6 n
Academics > Administration > Accepted Courses Send
1-2/72 n

School Address

ANU http:#/192.168.1.106:8080/

LocalSchool

XIl. Merging Components

The capability of Information-Centric Architecture that has the greatest impact on productivity
is the merging of component libraries. This ability of ICA in turn depends on the merging
capability of information trees of which four types are discussed below.

1. Merging two versions of the same IC Object — In this case, we have two different
instances of the same object structure where the content of the source object is to
merged into the target object. It is the option of the merge function to either keep or
delete any content in the target that is not in the source. In all cases, new
entity/attribute values in the source override those in the target. The information tree
structure and enhancements make it very straightforward to merge complex data. Also,
though not required, the entities in IC Objects are usually identified with a single
generated ID attribute. This makes it easy to identify the same entity in two separate
objects and allows all other attributes in an entity to be modifiable, eliminating the
problems of composite foreign keys.

2. Merging subobject components of two different IC Objects — If two different objects
have similar subobject structures, that subobject data can be merged from one object
into another in the same manner as above.

3. Application source library support — One important example of merging is for the ICA
tools themselves is the ability to the meta data of an ICA application. Though the ICA
tools use an ER Data model to define meta components, current source management
systems do not support keeping meta data in database form. Thus, the ICA tools keep
the meta objects as separate files managed by a source management system and merge
them as necessary, including during the run-time of the tools themselves.

4. Merging of components from one IC Library into another — This major capability of ICA is
dependent on the fact that all meta data within an IC Library are themselves composed
of IC Objects, as described in 3 above. The visual images of the information trees in
both libraries pf application data enable the logical understanding of the task itself and
the use of information trees as meta data in the CIA tool set facilitate its execution.

Conclusion

The Information Tree with its extensions that are implemented in IC Objects is the base for a
consistent, high-level, information view of business data that supports the generation of
business applications from design-level definitions. The results are:

1. Huge productivity gains from the ability to attack rigorous business problems at the
design-level, generating executable systems and eliminating the low-level coding
normally required by such problems.

Flexibility in generating solutions in multiple physical environments.

Flexibility in modifying and enhancing those business processes and interfaces.
Improved quality of application functionality as a result of keeping the focus of
development on design-level issues and supporting iterative development.

However, in spite of the significant advantages of the information tree in building systems, the
huge productivity gains promised by ICA will result from seeing the business application world
through the lens of Reusable Component Libraries where applications are assembled from
reusable components, all of this enabled through the information tree extensions of ICA.

